Prochlorococcus: advantages and limits of minimalism.
نویسندگان
چکیده
Prochlorococcus is the key phytoplanktonic organism of tropical gyres, large ocean regions that are depleted of the essential macronutrients needed for photosynthesis and cell growth. This cyanobacterium has adapted itself to oligotrophy by minimizing the resources necessary for life through a drastic reduction of cell and genome sizes. This rarely observed strategy in free-living organisms has conferred on Prochlorococcus a considerable advantage over other phototrophs, including its closest relative Synechococcus, for life in this vast yet little variable ecosystem. However, this strategy seems to reach its limits in the upper layer of the S Pacific gyre, the most oligotrophic region of the world ocean. By losing some important genes and/or functions during evolution, Prochlorococcus has seemingly become dependent on co-occurring microorganisms. In this review, we present some of the recent advances in the ecology, biology, and evolution of Prochlorococcus, which because of its ecological importance and tiny genome is rapidly imposing itself as a model organism in environmental microbiology.
منابع مشابه
Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability
Nitrogen (N) often limits biological productivity in the oceanic gyres where Prochlorococcus is the most abundant photosynthetic organism. The Prochlorococcus community is composed of strains, such as MED4 and MIT9313, that have different N utilization capabilities and that belong to ecotypes with different depth distributions. An interstrain comparison of how Prochlorococcus responds to change...
متن کاملDifferential NtcA Responsiveness to 2-Oxoglutarate Underlies the Diversity of C/N Balance Regulation in Prochlorococcus
Previous studies showed differences in the regulatory response to C/N balance in Prochlorococcus with respect to other cyanobacteria, but no information was available about its causes, or the ecological advantages conferred to thrive in oligotrophic environments. We addressed the changes in key enzymes (glutamine synthetase, isocitrate dehydrogenase) and the ntcA gene (the global nitrogen regul...
متن کاملمطالعه پنج اثر منتخب از سفال نیشابور مربوط به قرون 2 تا 4 هـ.ق. در تطبیق با اندیشههای هنر مینیمال
Among multiple discovered Nishapur pottery works of 9th to 11th century AD, there are samples which differ from the others in aesthetic aspects. Their creators may have followed other aesthetic rules presumably. In these cases, there are not lots of ornamentation, vibrant colors and prevalent motifs of their period. And also empty spaces and a kind of stillness play an important role in them un...
متن کاملThe RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria
Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b6f and Photosystem I contents normalized to Photosystem II content, while Prochlorococcus MIT 9313 has ...
متن کاملProchlorococcus: approved for export.
T he oceans account for approximately half of global carbon fixation (1), but unlike plantdominated terrestrial environments, marine photosynthesis is dominated by single-celled microbes, or phytoplankton. These phytoplankton are the engines that drive marine food webs and biogeochemistry. Among the vast variety of phytoplankton found in the open ocean, the non-nitrogen-fixing cyanobacterium Pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of marine science
دوره 2 شماره
صفحات -
تاریخ انتشار 2010